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Inelastic effects on resonant tunnelling in a double-&function 
potential 
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Apartado Postal 2681, Ensenada, BC, Mexico 
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A b s h e t .  Inelastic effects on resonant hnnelling are considered for a model consisting of 
a doub1e-S-function potential with the region in behveen oscillating with amplitude VI and 
frequency o. In the limit of small Vila, we ob& analytic expressions for the " i ss ion  
coeficient for the elastic and the two nearest inelastic channels. Numerically, we obtain a set of 
resonant sidebands around the static monanw with magnitudes proportional U) ( V ~ / O ) ~  for both 
symmehic and asymmetric S functions. We discuss the conditions under which the sidebands of 
contiguous stltic monances can superpose, producing an i n w e  in the probabilities of both 
elastic and inelastic events. We also describe the feedback mechanism between the s c a r i n g  
of elastic and inelastic events. which modifies the probabilities of elastic events. 

1. Introduction 

Over the last few years there has been increasing interest in the understanding of transport 
properties of resonant tunnelling devices for their great technological importance. Even 
though dissipative effects, i.e. the effects of electron-phonon scattering on the tunnelling 
current, have been studied by several different methods L1-51, only a few authors have 
considered resonant systems and these have concentrated on isolated resonances [6- 
81. In a recent paper, Cai et a1 [9] propose a general approach to the study of one- 
dimensional optical-phonon-associated electron tunnelling based on the polaron model, in 
the independent-boson approximation, which is applicable to potentials of arbilrary shape, 
and present results of calculations for an actual double barrier. 

In this paper we consider a periodic time-dependent double-&function potential to 
model the effects of dissipation. This is the classical version of the operator of interaction 
introduced by Cai et al. As has been pointed out by Lopez-Castillo et al [5 ] ,  this amounts 
to replacing phonon creation and annihilation operators by their expectation values in a 
phonon coherent state. In our model, an incident particle with energy E that interacts with 
the inelastic scattering barrier will suffer multiple inelastic collisions with the non-stationary 
field and wiLl he transmitted or reflected with an energy distribution E' = E 3t no, with n 
an integer. 

Our objective is to calculate analytically the probabilities of transmission for the quantum 
problem of a system of Iength L,  with 6 functions at the boundaries (x  = 0, x = L )  and an 
oscillating region with constant amplitude VI and frequency w in between (0 < n < L). In 
this classical potential model, the parameter Vt represents a combination of both elecfxon- 
phonon coupling strength and the temperature [IO]. 
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The election of this model is based on the fact that it is a simple quantum system that 
can be solved analytically, giving rise to several resonant solutions. The study of inelastic 
effects in this system may be useful in describing the scattering properties of more realistic 
systems such as the quantum-well resonant-tunnelling diode whose conduction-band profile 
includes a doublebarrier structure. 
Our results show analytically, for the case of small Vl /o ,  the existence of a feedback 

effect [4], by which the elastic processes are affected by the inelastic ones, and this is clearly 
appreciated in our numerical results. We also find a set of resonant inelastic sidebands around 
each elastic resonance with magnitude proportional to (VI/W)'. Our calculation predicts 
conditions under which the inelastic resonances can superpose to increase the probabilities 
of both elastic and inelastic events. In the asymmetric case we find two contributions to the 
elastic resonance probability maximum, due to the asymmetry of the 6 functions and to the 
feedback mechanism. 

The outline of the paper is as follows: in section 2 the model and the formal solution in 
the two-channel approximation are described. In section 3 the analytical results are presented 
and in the last section these are discussed and plots of total transmission coefficient as a 
function of energy are presented, with the inelastic contributions explicitly shown. 

2. Model and solution 

The potential function corresponding to our model can be written as 

V ( x ,  t )  = AlS(X) + A& - L) + 2Vl cos(ot)o(x)o(L - x )  (1) 

where A I  and A2 are the magnitudes of the 6 functions, VI is the amplitude of the electron- 
phonon coupling, taken as a constant, UJ is the frequency of oscillation and e ( x )  is the 
Heaviside step function (figure 1). 

0 L 

Figure 1. The double-&function potential of width L with the region in between oscillating 
with amplitude Vi and frequency m. Transmission and resection occurs at energies E * nm. 

We want to study the effects on the transmission process of an incident particle with 
energy E on the left (region I, x 6 0). that interacts with the oscillating barrier and is 
scattered in region II (0 6 x 6 L) ,  until it finally leaves the system travelling to the right 
(region IU, x 2 L).  In region II, we need to solve the non-stationary Schrijdinger equation 

i a P / a t  = -a2wnjax2 + [ A ~ S ( X )  + A,S(X - L) + 2vi cosmt]wl1 (2) 
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where we have used units of fr = 2m = 1. The general solution of equation (2). given that 
the time-dependent potential is separable, can be written as 

~ ( x ,  t) = exp ( - 2 i v l W )  1 dE' [BE, eXp(ikE,x) + cE, exp(-ikpx)l exp(-iE't) 
sin wr 

(3) 

where exp(iE,x) and exp(-ikax) are linearly independent solutions of the stationary 
problem. 

Assuming that an incident particle with energy E and unit amplitude enters region E, and 
considering Vl/o small, then only components of t) with energies E (elastic channel) 
and E k o (inelastic channels) are important, and we calculate the probability current to 
order  VI/^)^. From equation (3). expanding the exponential exp[-ZiQ(sinwt)/o] = 
1 - (Vl/w)exp(iwt) + (V~/o)exp(-iot), we can write 

where 

the subscripts 0 and f corresponding to energies E and E+w, respectively. Thus, ko = v% 
and k+ = s. In this approximation the solution in region I is the sum of plane waves 
for each channel involved 

q ' ( x ,  t) = exp( ix  - iEt) + Aoexp(-&x - iEr) 

+ A+ exp[-ik+x - i(E + w)t] + A- exp[-ik-x - i(E - of t ]  (8) 

where A0 and A* are the reflection probability amplitudes at the corresponding energies. 
Similarly in region III, the solutions are outgoing plane waves for all channels: 

F ( x ,  t )  = D~ exp(ikox - iEt) + D+ exp(ik+x - i(E + w)r] 

+ D- exp[kx - i(E - o)t] 

with DO and D+ the transmission probability amplitudes. 
Using the boundary conditions for the wavefunction and its derivatives at x = 0 and 

x = L, which must be satisfied for all times, and solving the corresponding system of 
equations, it is possible to find the transmission and reflection amplitudes for channels 0 
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and f. With these amplitudes we may calculate the eansmitted and reflected currents, 
which are 

F Rojas and E Cota 

JF' = kolAo12 .Ioms = kolDo12 (10) 

J;" = k*lA*IZ JP = k*lD*I2. (11) 

The total bansmission coefficient is the sum of the transmitted currents divided by the 
incident current, which in these units is simply ko, for all the channels involved 

(12) T = (l/kO)(Joms + .I+""' + J-!?). 

3. Analytic solutions 

The method used in this work to calculate all the amplitudes is the following. First, the 
solution for the elastic channel to order zero in Vl/w is obtained by ignoring first-order 
terms in equation (6). We calculate the coefficients Bo and CO and put them into the 
first term on the right-hand side of equations (5) and (7), and apply the corresponding 
boundary conditions to obtain the reflection and transmission amplitudes for the inelastic 
channels to first order. In this process the coefficients B-+ and C i  are determined, which 
we now introduce into the terms of order VI/W of the elastic-channel solution (6) to find 
the amplitudes to first order. This correction determines how the elastic channel is affected 
due to the presence of inelastic channels, i.e. the feedback effect, and is a consequence of 
unitarily or current conservation [4]. 

Explicitly, by applying the boundary conditions to the elastic channel we find, for the 
reflection ( A o )  and transmission (DO) amplitudes to zero order, 

AO = [(Az/Ziko)(A1/2iko + l)exp(Zikol) + (A1/2lko)(l - Az/Ziko)l 

x [-(Al/Ziko)(Az/2iko) exp(2ikol) + (1 - 1 1 / 2 i o ) ( l -  A~/2ib)]-' (13) 

DO = l/[-(A1/2iko)(Az/2&) exp(2ikol) + (1 - h1/2iko)(l -hz/2iko)l (14) 

(15) 

while the amplitudes BO and CO in region II are 

EO = (l/Zik0)Do(Ziko - 12) 

CO = (Az/2iko)Doexp(2ikol). (16) 

To determine the amplitudes for the inelastic channels let us introduce the function defined 
by 

zo(x) = (Vl/4[Boexp(ikox) + Coexp(-ikox)l (17) 
so that applying the boundary conditions for these channels we find 
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where the auxiliary expressions are defined by 

MI = [ik+zo(o) + z,N)l- [&zo(L) + &)I exp(-&L) 

M Z  = IikclZo(0) - 4(0)1- [ik*zo(L) - &L)Iexp(hL).  

(20) 

(21) 

To determine Ml.2, one needs the function zo and its derivatives ZE, evaluated at the boundary 
points. These can be written in terms of z&), so that substituting Bo and CO from (15) 
and (16) into (17) and evaluating at x = 0, x = L,  one finds 

zoW) = (V1/4D0exp(ikoO (22) 

zo(0) = [zo(L)/ikol[(ik~ - A d  exp(-ikd) + ~ZCOS@OL)I 

~$0) = zo(L)[ik~exp(-ikoL) - h~cos(k~L)I  

zJL) = zo(L)[iko - .\d. 

(23) 

(24) 

(25) 

The next step is to calculate the expressions for the amplitudes corresponding to the elastic 
channel including feedback effects. This means taking into account terms of order V,/w in 
(6) and solving the corresponding boundary value problem. We obtain 

A; = A0 + [(-hz/2&) exp(2ikoL)Ll/2iko + (1 - hh~/2ik0)L2/2ik0] 

x [-(hl/2iko)(Az/Zika)exp(Zikal) + (1 - h~/Ziko)(l - h2/2iko)l-' (26) 

DL = DO + [-(I - 11/2ib)L1/2iko + (A1/2iko)Lz/2ikoI 

x [-(hl/2iko)(A2/2iko) exp(2ikol) + (1 - hl/2ih)(l - A~/Ziko)]-* (27) 

where the auxiliary functions L1.2 are given by 

LI = [ikoh(O) + h'(O)] - [ikoh(L) + h'(L)] exp(-ikoL) 

L2 = [ibh(O) - h'(0)] - [ibh(L) - h'(L)]exp(ik~L) 

(28) 

(29) 

with h ( x )  = z-(x) - z+(x), and the functions z* are defined by 

z* (x )  = (VI/w)[Bi exp(ik*x) + C+ exp(-ikix)l. (30) 

The coefficients B*, C* in region II are determined by 

B+ = (l/Zik*)(D&ik+ - A21 - [ik+zo(L) + z'(L)]exp(-iki.L)} 

C+ = (1/2ik*)(AzD* exp(Zik*x) - [ik*zo(L) -@)I exp(ik+L)] 

(31) 

(32) 

which can be calculated since we already know the transmission amplitudes D* from (19), 
and %(L) ,  z@) are given by (22) and (25). 

Finally, we can obtain the total transmission coefficient from 

T = + (k-/ko)lD-I2 + (k+/ko)ID+l2. (33) 
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4. Results and discussion 

Fist, we know that the expression for the transmission coefficient for the double8-function 
potential in the static case is the square modulus of equation (14). It is known, furthermore, 
that in the symmetric case the transmission spectrum has resonant peaks with a maximum 
value of one. In the asymmetric case, there will still be resonances but with maximum 
value less than one. 

Next, let us analyse the expression for the transmission amplitude for the inelastic 
channels, equation (19). When we compare with the static case, equation (14), we see 
that the denominators are equal, with the exception that they are calculated at the value 
k* corresponding to each channel. Thus, D* is proportional to Do&). Furthermore, 
we see from equations (20) and (21) that upon substitution of and its derivatives the 
term z&) can be factorized. Therefore, the amplitudes D* will also be proportional to 
z&). Explicitly, we have that D*- 2 (Vl/w)D~(ko)Do(k~). This implies the following 
two observations: the inelastic channels will exhibit resonances at energies E, and Er f w,  
where EI is the resonance energy for the static case, i.e. for each resonance of the static 
problem there will be two inelastic resonant sidebands. Also, the magnitudes of these 
resonant sidebands are proportional to g = (V]/w)*. Each channel contributes a value of g 
to the transmission resonance at E, so that the total magnitude of these peaks will be 2g. 
Since this could lead to a loss of unitarity in the symmelric case, it is necessary to include 
the following order correction terms, i.e. feedback effects (equations (26) and (27)). 

When plotting the transmission coefficient as a function of energy for our model, we 
thus expect to see resonances at energies E, belonging to the static case, with magnitudes 
decreased by feedback effects. There should also appear inelastic peaks at energies Er i w 
with magnitudes proportional to g. 

We present plots of the total transmission coefficient, equation (33), as a function of 
energy for several configurations of the system, showing the inelastic contribution explicitly 
on a separate plot. We have fixed the values w = 2.5 and VI = 0.8 (g = 0.1) while varying 
the other parameters in the system. We study both the symmetric and asymmetric cases, 
for different values of L, thus varying the number of resonances in a given energy interval. 

First, we show ow results for the symmetric case (AI = A2 = 20) for several values of 
L [ I  I]. In figure 2(a) we show the case L = 3 where neighbouring resonances satisfy the 
condition 

F Rojas and E Cora 

Ea -Err z 2w. (34) 

In the neighbourhood of each static resonance we can observe well defined satellite peaks 
with magnitude, as we have pointed out, proportional to g. Similarly, the contribution of 
the inelastic channels to the elastic resonance magnitude is proportional to 2g (figure 2(b)). 

When we increase L (figure 31, the number of resonances in the same energy interval 
increases so that condition (34) for the separation between resonances is no longer satisfied. 
Thus, satellite peaks belonging to neighbouring resonances may superpose, giving rise to 
inelastic peaks with larger magnitude. The condition for this to occur is, for resonances at 
Er1 and Ea,  

This condition is clearly observed in figure 3(b) for the inelastic peak at energy 16.3 whose 
magnitude is the sum of magnitudes of the satellite peaks corresponding to the two adjacent 
elastic resonances. 
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Finally, in figure 4 we consider the case L = 7 where again we have two resonances 
satisfying condition (35) with the two neighbouring resonances on each side almost 
satisfying it. On this figure we also have a case where 

i.e. the inelastic satellite peak corresponding to the resonance at E,, conhibutes to the 
magnitude of the resonance at ER and vice versa. As far as we know, this superposition of 
satellite peaks of contiguous resonances has not been reported in the literature, since most 
of the work has been done for systems with isolated resonances. 

1.0 

z 0 .8  

v) 
0.6 

I 
ln z 0.4 

I- 0.2 

0.0 

e 

2 

0 1 0  2 0  30 4 0  5 0  

1.0 . , . . , . , , . , . . ~. , , . , , , , 

Figure 4. ( 0 )  Total transmission coefficient 3s a 
function of energy E for lhe symmetric case. The 
dolled curve corresponds to the static case; the full 
curve includes inelastic effects. The parameler values 
are 1, = 12 .= U). L = 7. (b) Contribution from 

2 o  3 o  4 o  , 5 o  inelastic channels. The m o w  indicates superposition 
of ineIztic resonance peaks, and the letter a indicates 

ENERGY reinforcement of elastic resonances. 

0.4 

b 0.2 

0.0 

2 

, 

In these figures, the effects of feedback between elastic and inelastic channels is observed 
through the lowering of the magnitudes of the transmission coefficient as compared to the 
static case, by a factor of about 0.2. It is also interesting to note that, depending on the 
values of the parameters, one has competition between this effect and a reinforcement of 
the magnitude due to superposition of satellite peaks. 

In figure 5 we show the asymmetric case. The important difference in this case is 
the general lowering of the transmission magnitudes due to both the asymmetry and the 
feedback from inelastic processes. 

In all cases considered before, the intensities of the 6 functions are sufficiently large 
that several resonances exist in the energy interval considered. Next we study the case 
where there are only a few resonant states (6 functions with smaller intensity). Figure 6 
shows the results for the symmetric case. Again we obtain a reinforcement of resonances 
by inelastic contributions at the energies shown, satisfying condition (36). We also note 
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Figure 5. (a) Total transmission coefficient as a 
function of energy for the asymmetric case The 
parameter values are A I  = 20, AI = IO. L = 5. (b )  
Conmibibution fmm inelastic channels. 
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that for higher energies the inelastic effects are small (figure 6(b)). This can be understood 
since the contribution from inelastic channels depends on the magnitude of the transmission 
coefficient in the static case, which for these values of energy presents small oscillations 
with decreasing magnitude as the energy increases. The corresponding asymmetric case 
was also analysed but does not give new information. 

In conclusion, we have presented an analytic solution for the inelastic effects on resonant 
tunnelling via a periodic timedependent-potential model consisting of two 6 functions with 
the region in between oscillating with frequency o and amplitude VI, in the limit of small 
Vl/w. We observe that the effect of this potential is to give rise to satellite resonance 
peaks, about every static resonance, with magnitude proportional to g. We have analysed 
the conditions under which these satellite peaks of contiguous resonances may superpose, 
increasing the amplitude of both elastic and inelastic resonances and producing, on the 
elastic resonances, a competing effect with the feedback mechanism. 
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